(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0, cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sel(s(X), cons(Y, Z)) →+ sel(X, Z)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Z / cons(Y, Z)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
first(0', Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0', cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
first(0', Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
sel(0', cons(X, Z)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
activate(n__from(X)) → from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
Types:
from :: s:0' → n__from:cons:nil:n__first
cons :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
n__from :: s:0' → n__from:cons:nil:n__first
s :: s:0' → s:0'
first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
0' :: s:0'
nil :: n__from:cons:nil:n__first
n__first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
activate :: n__from:cons:nil:n__first → n__from:cons:nil:n__first
sel :: s:0' → n__from:cons:nil:n__first → s:0'
hole_n__from:cons:nil:n__first1_0 :: n__from:cons:nil:n__first
hole_s:0'2_0 :: s:0'
gen_n__from:cons:nil:n__first3_0 :: Nat → n__from:cons:nil:n__first
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
activate,
selThey will be analysed ascendingly in the following order:
activate < sel
(8) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
first(
0',
Z) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
sel(
0',
cons(
X,
Z)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
from(
X) →
n__from(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__from(
X)) →
from(
X)
activate(
n__first(
X1,
X2)) →
first(
X1,
X2)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:nil:n__first
cons :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
n__from :: s:0' → n__from:cons:nil:n__first
s :: s:0' → s:0'
first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
0' :: s:0'
nil :: n__from:cons:nil:n__first
n__first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
activate :: n__from:cons:nil:n__first → n__from:cons:nil:n__first
sel :: s:0' → n__from:cons:nil:n__first → s:0'
hole_n__from:cons:nil:n__first1_0 :: n__from:cons:nil:n__first
hole_s:0'2_0 :: s:0'
gen_n__from:cons:nil:n__first3_0 :: Nat → n__from:cons:nil:n__first
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_n__from:cons:nil:n__first3_0(0) ⇔ n__from(0')
gen_n__from:cons:nil:n__first3_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:nil:n__first3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
activate, sel
They will be analysed ascendingly in the following order:
activate < sel
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(10) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
first(
0',
Z) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
sel(
0',
cons(
X,
Z)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
from(
X) →
n__from(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__from(
X)) →
from(
X)
activate(
n__first(
X1,
X2)) →
first(
X1,
X2)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:nil:n__first
cons :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
n__from :: s:0' → n__from:cons:nil:n__first
s :: s:0' → s:0'
first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
0' :: s:0'
nil :: n__from:cons:nil:n__first
n__first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
activate :: n__from:cons:nil:n__first → n__from:cons:nil:n__first
sel :: s:0' → n__from:cons:nil:n__first → s:0'
hole_n__from:cons:nil:n__first1_0 :: n__from:cons:nil:n__first
hole_s:0'2_0 :: s:0'
gen_n__from:cons:nil:n__first3_0 :: Nat → n__from:cons:nil:n__first
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_n__from:cons:nil:n__first3_0(0) ⇔ n__from(0')
gen_n__from:cons:nil:n__first3_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:nil:n__first3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
sel
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sel.
(12) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
first(
0',
Z) →
nilfirst(
s(
X),
cons(
Y,
Z)) →
cons(
Y,
n__first(
X,
activate(
Z)))
sel(
0',
cons(
X,
Z)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
from(
X) →
n__from(
X)
first(
X1,
X2) →
n__first(
X1,
X2)
activate(
n__from(
X)) →
from(
X)
activate(
n__first(
X1,
X2)) →
first(
X1,
X2)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:nil:n__first
cons :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
n__from :: s:0' → n__from:cons:nil:n__first
s :: s:0' → s:0'
first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
0' :: s:0'
nil :: n__from:cons:nil:n__first
n__first :: s:0' → n__from:cons:nil:n__first → n__from:cons:nil:n__first
activate :: n__from:cons:nil:n__first → n__from:cons:nil:n__first
sel :: s:0' → n__from:cons:nil:n__first → s:0'
hole_n__from:cons:nil:n__first1_0 :: n__from:cons:nil:n__first
hole_s:0'2_0 :: s:0'
gen_n__from:cons:nil:n__first3_0 :: Nat → n__from:cons:nil:n__first
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_n__from:cons:nil:n__first3_0(0) ⇔ n__from(0')
gen_n__from:cons:nil:n__first3_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:nil:n__first3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.